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Abstract. A constructive method for obtaining new exact solutions of nonlinear evolution
equations is further developed. The method is based on the consideration of a fixed nonlinear
partial differential equation together withan additional generating conditionin the form of a
linear high-order ordinary differential equation. Using this method new non-Lie ansätze and
exact solutions are obtained for two classes of diffusion equations with power and exponential
nonlinearities, which describe real processes in physics, chemistry, and biology. The analysis
of the found solutions and the relation of the proposed method to some approaches, which have
been suggested in several recently published papers, are presented.

1. Introduction

Nonlinear second-order evolution equations (systems of equations) describe various
processes in physics, chemistry and biology (heat and mass transfer, filtration of liquid,
diffusion in chemical reactions etc). Construction of particular exact solutions for these
equations remains an important problem. Finding exact solutions that have a physical,
chemical or biological interpretation is of fundamental importance. The well known
principle of linear superposition cannot be applied to generate new exact solutions to
nonlinear partial differential equations (PDEs). Thus, the classical methods are not
applicable for solving nonlinear PDEs. Of course, a change of variables can sometimes
be found that transforms a nonlinear PDE into a linear equation, but finding exact solutions
of most nonlinear PDEs generally requires new methods.

The most popular methods for construction of exact solutions to nonlinear PDEs are the
method of inverse scattering and the Lie method. In this paper we do not consider the first
one since it is only efficient for nonlinear PDEs with a very specific structure (see [1]). The
Lie method [2–7] is based on using the Lie symmetry of a given PDE for the construction
of its exact solutions. Although the technique of this method is well known, new results
are constantly obtained for nonlinear PDEs with non-trivial Lie symmetries.

On the other hand it is well known that some very popular nonlinear PDEs have poor
Lie symmetry. For example, the well known Fisher equation is invariant only under the
time and space translations. The Lie method is not efficient for such PDEs since in these
cases it enables one to construct ansätze and exact solutions, which can be obtained without
using this cumbersome method. There are two ways to find a solution to this problem:
(1), instead of PDEs with poor Lie symmetry, to find their analogues with the non-trivial
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Lie symmetry; (2), to suggest new approaches for construction of new ansätze and exact
solutions that are not based on the search for Lie symmetry of a given PDE.

The first way was used in a series of our papers in collaboration with Fushchych [8–11]
(see also [7]), in which all nonlinear generalizations of a classical heat (diffusion) equation
that completely or partially preserve its Lie symmetry were described.

In the present paper we use the second way. Let us consider a nonlinear diffusion
equation with a convection term of the form

Tt = [A(T )Tx ]x + B(T )Tx + C(T ) (1)

whereT = T (t, x) is the unknown function andA(T ), B(T ), C(T ) are arbitrary smooth
functions. The indicest andx denote differentiation with respect to these variables.

Equation (1) generalizes a number of the well known nonlinear second-order evolution
equations, describing various processes in physics [12], chemistry [13] and biology [14]
(see [15] for a wide list of references).

It has been shown [16] that equation (1) by the local substitution

T → U =
∫
A(T ) dT ≡ A0(T ) (2)

is reduced to the form

Uxx = F0(U)Ut + F1(U)Ux + F2(U) (3)

where the functionsF0(U), F1(U), F2(U) are easily determined via the formulae

F0 = 1

A(T )

∣∣∣T=A−1
0 (U) F1 = −B(T )

A(T )

∣∣∣T=A−1
0 (U) F2 = −C(T )

∣∣∣T=A−1
0 (U) (4)

andA−1
0 is the inverse function toA0(T ).

The Lie symmetry of equation (3) was completely described in [16]. According to
the results of [16] any Lie ansatz, which reduces equation (3) to an ordinary differential
equation (ODE), can be obtained by solving the following Lagrange system:

dt

ξ0(t)
= dx

ξ1(t, x)
= dU

η0(t, x)+ η1(t, x)U
(5)

whereξ0, ξ1, η = η0+ η1U are known coefficients of the infinitesimal operator

X = ξ0∂t + ξ1∂x + η∂U . (6)

By solving equation (5) one can obtain a Lie ansatz of the form

U = g0(t, x)+ ϕ(ω)g1(t, x) (7)

whereϕ(ω) is a new unknown function,ω = ω(t, x) is the invariant variable, andg0(t, x)

and g1(t, x) are fixed functions determined byξ0, ξ1, η0 and η1. Note that the form (7)
is the typical form for Lie ans̈atze of any quasilinear PDE (see, e.g. [7]). So substituting
ansatz (7) into equation (3), one obtains a first- or second-order ODE, from which function
ϕ(ω) can be found. Taking into account substitution (2), one can see that the general form
of Lie ans̈atze for equation (1) is given by

A0(T ) = g0(t, x)+ ϕ(ω)g1(t, x). (8)

Ansätze with structures differing from (7) and (8) are callednon-Lie ans¨atzefor PDEs of the
forms (3) and (1), respectively. Of course, the form of non-Lie ansätze essentially depends
on the form of a given PDE.

It turns out that it is possible to construct a set of non-Lie ansätze with principally
different structure for some wide subclasses of nonlinear equations of the form (1) and (3).
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With this in mind, an approach to the construction of non-Lie ansätze and exact solutions
was suggested in [17, 18] that is based on the consideration of a given nonlinear PDE
together withan additional generating conditionin the form of a high-order ODE. This
approach has been applied in [17–19] for obtaining solutions of some nonlinear evolution
systems, which describe real processes in physics and chemistry.

In this paper, we study in detail two nonlinear equations of the form (1), namely

Tt = (T αTx)x + λ1T
αTx + 1

α
(s0T

1−α + s1T + qT 1+α) (9)

and

Tt = (exp(βT )Tx)x + λ1 exp(βT )Tx + 1

β
(s0 exp(−βT )+ s1+ q exp(βT )) (10)

whereT = T (t, x) is an unknown function andαβ 6= 0, λ1, s0, s1, q ∈ R. First, note that
equation (9) is reduced by the substitution

U = T α α 6= 0

to the equation

Ut = UUxx + 1

α
U2
x + λ1UUx + s0+ s1U + qU2. (11)

Analogously, the nonlinear evolution equation with exponential nonlinearities (10) is
reduced by the substitution

U = exp(βT ) β 6= 0

to the equation

Ut = UUxx + λ1UUx + s0+ s1U + qU2. (12)

Thus, hereinafter we consider the nonlinear equation

Ut = UUxx + rU2
x + λ1UUx + s0+ s1U + qU2 (13)

which in the casesr = 1
α
6= 0 andr = 0 is locally equivalent to equations (9) and (10),

respectively. In a particular case, any solutionU ∗(t, x) of (13) generates a solution of the
form

T ∗ =

(U∗)1/α r 6= 0

1

β
logU∗ r = 0

(14)

to equations (9) and (10), respectively.
In section 2, the method of additional generating conditions is applied to the construction

of new non-Lie ans̈atze of equations of the form (13). In section 3, new multiparameter
families of solutions for nonlinear equations of the form (13) are constructed.

In section 4, new exact solutions of the nonlinear equations (9) and (10) are tabulated.
Two types of the obtained solutions are applied for solving some nonlinear boundary-value
problems.

Finally, in section 5 analysis of the found solutions, and the relationship of the proposed
method with some approaches which have been suggested in several recently published
papers, is presented.
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2. A constructive method for obtaining non-Lie ans̈atze and new exact solutions of
the nonlinear equation (13)

Here an approach to the construction of exact solutions is presented that is based on the
consideration of a given nonlinear PDE together with an additional condition in the form
of an ODE.

Consider the following class of nonlinear evolution second-order PDEs

Ut = λ0UUxx + rU2
x + λ1UUx + qU2+ s1U + s0 (15)

where coefficientsλ0, r, λ1, q, s1 and s0 are arbitrary constants. It is easily seen that the
class of PDEs (15) contains the nonlinear equation (13) as a particular case.

If coefficients in (15) are arbitrary constants then this equation is invariant with respect
to the translation transformations generated by operators

Pt = ∂

∂t
Px = ∂

∂x
(16)

and one can find plane wave solutions of the form

U = U(kx + vt) v, k ∈ R. (17)

But we do not construct such solutions as many papers have been devoted to the construction
of plane wave solutions for various nonlinear PDEs of the form (1) (see, e.g. [15, 20, 21]
and references therein).

Hereinafter we consider (15) together with theadditional generating conditionsin the
form of linear high-order homogeneous equations, namely

α1(t, x)
dU

dx
+ · · · + αm−1(t, x)

dm−1U

dxm−1
+ dmU

dxm
= 0 (18)

whereα1(t, x), . . . , αm−1(t, x) are arbitrary smooth functions and the variablet is considered
as a parameter. It is known that the general solution of (18) has the form

U = ϕ0(t)g0(t, x)+ · · · + ϕm−1(t)gm−1(t, x) (19)

whereϕ0(t), ϕ1(t), . . . , ϕm−1(t) are arbitrary functions andg0(t, x) = 1, g1(t, x), . . . , gm−1

(t, x) are fixed functions that form a fundamental system of solutions of (18). Note that in
many cases the functionsg1(t, x), . . . , gm−1(t, x) can be expressed in an explicit form in
terms of elementary ones.

Let us consider relation (19) as an ansatz for PDEs of the form (15). It is important
to note that this ansatz containsm yet-to-be determined functionsϕi, i = 1, . . . , m. This
enables us to reduce the given PDE of the form (15) to a quasilinear system of ODEs of
the first order for the unknown functionsϕi . It is well known that such systems have been
investigated in detail.

On the other hand equation (15) forr = 0 is a particular case of equation (3) and for
r 6= 0 is locally equivalent to this equation. In fact, equation (15) forr 6= 0 is reduced
by the local substitutionst → λ0t, λ0 6= 0 andU = T α, α = 1/r (see the introduction)
to equation (9) that is a particular case of equation (1) . Thus, the general forms of Lie
ans̈atze for equation (15) are given by (7) or (8). Therefore ansatz (19) form > 2 is just the
non-Lie ansatz for any nonlinear equation of the form (15) since it has a structure different
from (7) and (8).

Let us apply ansatz (19) to the equation (15). Indeed, calculating with the help of
ansatz (19) the derivativesUt, Ux, Uxx and substituting them into PDE (15), one obtains the
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following expression:

ϕ0,t g0+ ϕ1,t g1+ · · · + ϕm−1,t gm−1 = ϕ0(s1g0− g0,t )+ · · · + ϕm−1(s1gm−1− gm−1,t )

+ϕ2
0(λ0g0g0,xx + rg2

0,x + λ1g0g0,x + qg2
0)

+ · · ·ϕ2
m−1(λ0gm−1gm−1,xx + rg2

m−1,x + λ1gm−1gm−1,x + qg2
m−1)

+ϕ0ϕ1(λ0g0g1,xx + λ0g1g0,xx + λ1g0g1,x + λ1g1g0,x + 2rg0,xg1,x + 2qg0g1)

+ϕ0ϕ2(λ0g0g2,xx + λ0g2g0,xx + λ1g0g2,x + λ1g2g0,x + 2rg0,xg2,x + 2qg0g2)

+ · · · + ϕm−2ϕm−1(λ0gm−2gm−1,xx + λ0gm−1gm−2,xx + λ1gm−2gm−1,x

+λ1gm−1gm−2,x + 2rgm−2,xgm−1,x + 2qgm−2gm−1)+ s0 (20)

where the indicest and x of functions ϕi(t) and gi(t, x), i = 0, 1, . . . , m − 1, denote
differentiation with respect tot andx. If one groups similar terms in accordance with the
powers of the functionsϕi(t), then sufficient conditions for reduction of this expression to
a system of ODEs can be found. These sufficient conditions have the following form:

s1gi − gi,t = gi1Qii1(t) (21)

λ0gigi,xx + r(gi,x)2+ λ1gigi,x + q(gi)2 = gi1Rii1(t) (22)

λ0(gigj,xx + gjgi,xx)+ 2rgi,xgj,x + λ1(gigj,x + gjgi,x)+ 2qgigj = gi1T i1ij (t) i < j

(23)

where coefficientsQii1, Rii1, T
i1
ij on the right-hand side are defined by the expressions on

the left-hand side.
With the help of conditions (21)–(23), the following system of ODEs is obtained

dϕi
dt
= Qi1iϕi1 + Ri1i (ϕi1)2+ T ii1i2ϕi1ϕi2 + δi,0s0 (24)

to find the unknown functionsϕi, i = 0, . . . , m − 1. In the right-hand sides of relations
(21)–(23) and (24), a summation is assumed from 0 tom−1 over the repeated indicesi1, i2
andδi,0 = 0, 1 is the Kronecker symbol. So, we have obtained the following statement.

Theorem 1.Any solution of system (24) generates the exact solution in the form (19) for
nonlinear PDE (15), if the functionsgi, i = 0, . . . , m− 1 satisfy conditions (21)–(23).

Remark 1.Equation (15) forλ0 = 0 can be considered as a generalization of the Hamilton–
Jacobi equation. It is well known that the problem of construction of exact solutions in
the explicit form for the Hamilton–Jacobi equation is a non-trivial one (see, e.g. [7]). The
suggested method can be applied to the construction of explicit solutions of equation (15)
for λ0 = 0 too. In the caseλ0 6= 0, equation (15) is reduced to the form (13) by the local
substitutiont → λ0t .

Remark 2.The suggested method can be realized for systems of PDEs (see the examples
in [17–19]) and for PDEs with derivatives of second or higher orders with respect tot and
x. In the last case one will obtain systems of ODEs of second or higher orders.

Remark 3.If the coefficientsλ0, λ1, s0, s1 and q in equation (15) are smooth functions of
the variablet then one can also construct families of exact solutions. But in this case the
systems of ODEs with time-dependent coefficients are obtained.

Since we suggest a constructive method for finding new non-Lie ansätze and exact
solutions, its efficiency will be shown by the examples below.
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In fact, let us use theorem 1 for the construction of non-Lie solutions of equation (13).
Consider an additional generating condition of the third order of the form

α1(t)
dU

dx
+ α2(t)

d2U

dx2
+ d3U

dx3
= 0 (25)

which is the particular case of (18) form = 3. Condition (25) generates the following chain
of the ans̈atze:

U = ϕ0(t)+ ϕ1(t) exp(γ1(t)x)+ ϕ2(t) exp(γ2(t)x) (26)

if γ1,2(t) = 1
2(±(α2

2 − 4α1)
1/2− α2) andγ1 6= γ2;

U = ϕ0(t)+ ϕ1(t) exp(γ (t)x)+ xϕ2(t) exp(γ (t)x) (27)

if γ1 = γ2 = γ 6= 0;

U = ϕ0(t)+ ϕ1(t)x + ϕ2(t) exp(γ (t)x) (28)

if α1 = 0;

U = ϕ0(t)+ ϕ1(t)x + ϕ2(t)x
2 (29)

if α1 = α2 = 0.

Remark 4.In the caseD = α2
2 − 4α1 < 0, one obtains complex functionsγ1 = γ ∗2 =

1
2(±i(−D)1/2− α2), i2 = −1 and then ansatz (26) is reduced to the form

U = ϕ0(t)+ [ψ1(t) cos( 1
2(−D)1/2x)+ ψ2(t) sin( 1

2(−D)1/2x)] exp
(
−α2x

2

)
(30)

whereϕ0(t), ψ1(t), ψ2(t) are yet-to-be determined functions.

By substituting the functionsg0 = 1, g1 = exp(γ1(t)x), g2 = exp(γ2(t)x) from ansatz (26)
into relations (21)–(23), one can obtain

Q00 = Q11 = Q22 = s1 R00 = q

T 0
12 =

4qr

1+ r T 1
01 = T 2

02 = q
(

1+ r

1+ r
)

(31)

and the following relations

Rii1 = Qii1 = T i1ij = 0 (32)

for all combinations of the indicesi, i1, j = 0, 1, 2 and k = 1, 2 not listed in (31).
Simultaneously the following constraints spring up:

r = 0 γ1,2(t) = 1
2(±(λ2

1− 4q)1/2− λ1) (33)

or

λ1 = 0 γ1,2(t) = ±(−q/(1+ r))1/2 r 6= −1. (34)

With the help of coefficients (31), (32), system (24) is reduced to the form

dϕ0

dt
= qϕ2

0 + s1ϕ0+ s0
dϕ1

dt
= s1ϕ1+ qϕ0ϕ1

dϕ2

dt
= s1ϕ2+ qϕ0ϕ2

(35)
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in the case of constraint (33) and to the form

dϕ0

dt
= qϕ2

0 + s1ϕ0+ s0+ 4rq

1+ r ϕ1ϕ2

dϕ1

dt
= s1ϕ1+ q

(
1+ r

1+ r
)
ϕ0ϕ1

dϕ2

dt
= s1ϕ2+ q

(
1+ r

1+ r
)
ϕ0ϕ2

(36)

in the case of constraint (34).

By substituting the functionsg0 = 1, g1 = exp(γ (t)x), g2 = x exp(γ (t)x) from ansatz
(27) into relations (21)–(23), the corresponding values of the functionsRii1,Qii1, T

j

ii1
, are

obtained, for which system (24) coincides with the system of ODEs (35). But in this case
we obtain the constraintsr = 0, λ2

1− 4q = 0 andγ = −λ1/2.
Similarly, we obtain with the help of ansatz (28) the following system of ODEs

dϕ0

dt
= λ1ϕ0ϕ1+ s1ϕ0+ s0

dϕ1

dt
= λ1ϕ

2
1 + s1ϕ1

dϕ2

dt
= λ1ϕ1ϕ2+ s1ϕ2

(37)

to find the unknown functionsϕi, i = 0, 1, 2. In this case we obtain the constraints
r = q = 0 andγ = −λ1.

Finally, ansatz (29) forλ1 = q = 0 gives the following system of ODEs

dϕ0

dt
= 2ϕ0ϕ2+ s1ϕ0+ s0+ rϕ2

1

dϕ1

dt
= (2+ 4r)ϕ1ϕ2+ s1ϕ1

dϕ2

dt
= (2+ 4r)ϕ2

2 + s1ϕ2.

(38)

Thus, any ansatz from set (26)–(29) can be applied for the reduction of the nonlinear
PDE (13) to a system of first-order ODEs. But in all cases additional constraints for
coefficientsr, λ1, s0, s1, q ∈ R spring up. These constraints follow from relations (21)–(23)
and they are necessary for the above-mentioned reduction.

On the other hand, theorem 1 gives onlysufficient conditions for such reduction.
In some cases, noting additional relations between the fundamental system elements
g0(t, x) = 1, g1(t, x), . . . , gm−1(t, x), it is possible to find simpler sufficient conditions
for the above-mentioned reduction. Let us give an example in the case of ansatz (28).
Noting thatg2,t = γ−2 dγ

dt g1g2,xx , one can transfer this term from relations (21),i = 2 into
(23), i = 1, j = 2, so that two relations in (21)–(23) take new form. Taking into account
this circumstance for ansatz (28), one can find at once the caser = −1 andλ1 = q = 0
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when the nonlinear PDE (13) is reduced to the system of first-order ODEs

dγ

dt
= γ 2ϕ1

dϕ0

dt
= −ϕ2

1 + s1ϕ0+ s0
dϕ1

dt
= s1ϕ1

dϕ2

dt
= −2γ ϕ1ϕ2+ s1ϕ2+ γ 2ϕ0ϕ2.

(39)

It is easily seen that in this case the functionγ (t) 6= constant and the first equation in (39)
is an additional condition for obtaining the functionγ .

By analogy with the additional generating condition (25), we can consider the fourth-
order condition of the form

α1(t)
dU

dx
+ α2(t)

d2U

dx2
+ α3(t)

d3U

dx3
+ d4U

dx4
= 0. (40)

This condition generates a chain of the ansätze. Although there are other interesting cases,
probably the most non-trivial one occurs when we will consider the ansatz

U = ϕ0(t)+ ϕ1(t) exp(γ1x)+ ϕ2(t) exp(γ2x)+ ϕ3(t) exp(γ3x) (41)

whereϕ0(t), . . . , ϕ3(t) are yet-to-be determined functions andγ1, γ2, γ3 are someunequal
constants andγ1γ2γ3 6= 0. It turns out that it is possible to reduce equation (13) with the
help of (41) to a system of ODEs of the form (24) only in a special case. Indeed, by
substituting the functionsg0 = 1, g1 = exp(γ1x), g2 = exp(γ2x) andg3 = exp(γ3x) from
ansatz (41) into relations (21) ati = 0, 1, 2, 3, one obtains

Q00 = Q11 = Q22 = Q33 = s1 Qii1 = 0, i 6= i1. (42)

Substitution of the functionsgi, i = 0, . . . ,3, into relation (22) ati = 0 gives

R00 = q R0a = 0 a = 1, 2, 3. (43)

In the casesi = 1, 2, 3 relations (22) take the following form:

[(1+ r)γ 2
a + λ1γa + q] exp(2γax) = gi1Rai1(t) a = 1, 2, 3 (44)

where a summation is assumed from 0 to 3 over the repeated indicesi1. It turns out that
these relations can be fulfilled only in the case (i)

γ1,2 = ±(λ
2
1− 4q(1+ r))1/2− λ1

2(1+ r) γ3 = 1
2γ2 (λ2

1− 4q(1+ r))(1+ r) 6= 0 (45)

or (ii)

γ2 = 1
2γ1 γ3 = 1

4γ1 (46)

whereγ1 is a root of the quadratic equation(1+ r)γ 2
a + λ1γa + q = 0. It is easy to check

that constraint (46) is too strong because it is impossible to satisfy relations (23). Therefore,
the first case only is considered below.

Using relations (44) under constraint (45), one obtains

R32 = λ1γ2+ 3q

4
Rai1 = 0 a = 1, 2, 3 (47)

where the combinations of the indices(a, i1) 6= (3, 2).
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Similarly, relations (23) at(i, j) = (1, 2) and(i, j) = (2, 3) can be fulfilled only in the
caseγ1+γ2 = γ3 (i.e. q = −6λ2

1 6= 0) andr = − 2
3 (i.e. γ1 = 3λ1). Under such constraints,

it is easy to construct the coefficientsT i1ij , namely:

T 2
02 = 18λ2

1 T 3
03 = −6λ2

1 T 0
13 = 18λ2

1 T 3
12 = 54λ2

1 (48)

and

T
i1
ij = 0 (49)

for all combinations of the indicesi, i1, j = 0, 1, 2, 3 not listed in (48).
With the help of coefficients (42), (43), (47)–(49), system (24) is reduced to the form

dϕ0

dt
= s1ϕ0+ 18λ2

1ϕ1ϕ3− 6λ2
1ϕ

2
0 + s0

dϕ1

dt
= s1ϕ1

dϕ2

dt
= s1ϕ2+ 18λ2

1ϕ0ϕ2− 6λ2
1ϕ

2
3

dϕ3

dt
= s1ϕ3− 6λ2

1ϕ0ϕ3+ 54λ2
1ϕ1ϕ2.

(50)

Thus, according to theorem 1 any solution of the ODE system (50) generates an exact
solution of the form

U = ϕ0(t)+ ϕ1(t) exp(3λ1x)+ ϕ2(t) exp(−6λ1x)+ ϕ3(t) exp(−3λ1x) (51)

for nonlinear equation

Ut = UUxx − 2
3U

2
x + λ1UUx + s0+ s1U − 6λ2

1U
2. (52)

It is easily seen that this equation is locally equivalent to the nonlinear diffusion equation
with the convection term

Tt = (T − 3
2Tx)x + λ1T

− 3
2Tx − 2

3(s0T
5
2 + s1T − 6λ2

1T
− 1

2 ). (53)

Therefore any solution of (52) can be transformed into a solution of the nonlinear heat
equation (53), using (14) forα = − 3

2.

3. Construction of the families of non-Lie exact solutions of the nonlinear
equation (13)

The systems of ODEs, which were obtained in the previous section, enable us to construct the
multiparametric families of non-Lie exact solutions of the nonlinear equation (13). Having
obtained the solutions of equation (13), we can easily construct solutions for the nonlinear
equations (9) and (10) (see substitution (14)).

So consider the system of ODEs (35). The first equation in (35) is autonomous and its
solutions essentially depend on the coeficientsq, s1, s0. By solving this equation we obtain
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the following solutions [22]

ϕ0 = 1

2q



2

c0− t − s1 if D = 0

√
(−D) tan

(√
(−D)

2
(t − c0)

)
− s1 if D < 0

√
D coth

(√
D

2
(c0− t)

)
− s1 if (2qϕ0+ s1)2 > D > 0

√
D tanh

(√
D

2
(c0− t)

)
− s1 if D > (2qϕ0+ s1)2 > 0

(54)

whereD = s2
1 − 4s0q.

Having solution (54), it is easy to find the general solution for the system of ODEs (35).
So, ansatz (26) generates the following three-parameter family of solutions of equation (13)
at r = 0

U = ϕ0(t)+ 1

µ(t)

[
c1 exp

(
1

2
s1t + γ1x

)
+ c2 exp

(
1

2
s1t + γ2x

)]
(55)

where

µ(t) =



|c0− t | if D = 0∣∣∣∣cos

[√
(−D)

2
(t − c0)

]∣∣∣∣ if D < 0∣∣∣∣∣sinh

[√
D

2
(c0− t)

]∣∣∣∣∣ if (2qϕ0+ s1)2 > D > 0

cosh

[√
D

2
(c0− t)

]
if D > (2qϕ0+ s1)2 > 0

(56)

and γ1,2 = 1
2(±(λ2

1 − 4q)1/2 − λ1). In (54)–(56) and hereinafterc0, c1, c2 are arbitrary
constants. Note that in the caseD > 0 the family of solutions (55) can be written in the
form

U = ϕ0(t)+ 1

a0± exp
√
Dt

[
c1 exp

(
s1+
√
D

2
t + γ1x

)
+ c2 exp

(
s1+
√
D

2
t + γ2x

)]
(57)

wherea0 = exp(c0

√
D).

By solving the system of ODEs (36), we obtain the following family of solutions of
equation (13) forλ1 = 0, r 6= −1

U=ϕ0(t)+ exp

[
s1t + q 2r + 1

r + 1

∫
ϕ0(t) dt

][
c1 exp

(
−
√ −q

1+ r x
)
+ c2 exp

(√ −q
1+ r x

)]
(58)

whereϕ0(t) is an arbitrary solution of the integro-differential equation

dϕ0

dt
= qϕ2

0 + s1ϕ0+ s0+ 4c1c2
qr

1+ r exp

[
2s1t + 2q

(
1+ r

r + 1

)∫
ϕ0(t) dt

]
. (59)

This equation is reduced to a nonlinear second-order ODE that cannot be integrated in
the general case. However, it is easily seen that in the casec1c2 = 0, integro-differential
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equation (59) is reduced to the first ODE in system (35). So, two-parameter families of
solutions

U = ϕ0(t)+ c2

(µ(t))
2r+1
r+1

exp

(
1

2
s1t +

√ −q
1+ r x

)
(60)

and

U = ϕ0(t)+ c1

(µ(t))
2r+1
r+1

exp

(
1

2
s1t −

√ −q
1+ r x

)
(61)

are obtained forc1 = 0 andc2 = 0, respectively (the functionsϕ0(t) andµ(t) are defined
in (54) and (56)).

Remark 5.In the caser = − 1
2, integro-differential equation (59) is also reduced to an ODE.

However, the general solution of this ODE cannot be obtained in the explicit form since
the obtained ODE is the Riccati-type equation.

It is very important to note that in the caseλ1 = 0, q/(1+ r) > 0, r 6= −1, we can
construct periodic solutions of the equation (13). In fact, it is easily seen that, if complex
constants 2c1 = c10− ic11, 2c2 = c10+ ic11, than we obtain from (58) the following three-
parameter family of solutions of equation (13)

U = ϕ0(t)+ exp

[
s1t + q 2r + 1

r + 1

∫
ϕ0(t) dt

] [
c10 cos

(√
q

1+ r x
)
+ c11 sin

(√
q

1+ r x
)]
(62)

wherec10, c11 are arbitrary real constants andϕ0(t) is an arbitrary solution of the integro-
differential equation

dϕ0

dt
= qϕ2

0 + s1ϕ0+ s0+ (c2
10+ c2

11)
qr

1+ r exp

[
2s1t + 2q

(
1+ r

r + 1

)∫
ϕ0(t) dt

]
.

(63)

The ansatz (27) generates the three-parameter family of solutions of equation (13) at
λ2

1− 4q = 0 with the similar structure, namely:

U = ϕ0(t)+ 1

µ(t)

[
c1 exp

(
1

2
(s1t − λ1x)

)
+ c2x exp

(
1

2
(s1t − λ1x)

)]
(64)

where the functionsϕ0 andµ are presented in formulae (54) and (56).
Similarly we obtain the general solution of system (37)

ϕ0(t) =
exp( 1

2s1t)

µ1(t)

(
c0+ s0

∫
µ1(t)

exp( 1
2s1t)

dt

)

ϕ1 = 1

2λ1



2

c1− t if s1 = 0

|s1| coth

( |s1|
2
(c1− t)

)
− s1 if (2λ1ϕ1+ s1) > |s1| > 0

|s1| tanh

( |s1|
2
(c1− t)

)
− s1 if |s1| > (2λ1ϕ1+ s1) > 0

ϕ2(t) = c2
exp

(
1
2s1t

)
µ1(t)

(65)
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where

µ1(t) =



|c1− t | if s1 = 0∣∣∣∣sinh

[ |s1|
2
(c1− t)

]∣∣∣∣ if (2λ1ϕ1+ s1) > |s1| > 0

cosh

[ |s1|
2
(c1− t)

]
if |s1| > (2λ1ϕ1+ s1) > 0.

(66)

So ansatz (28) generates the following three-parameter family of solutions of equation
(13) atr = q = 0, λ1 6= 0

U = exp( 1
2s1t)

µ1(t)

(
c0+ s0

∫
µ1(t)

exp( 1
2s1t)

dt

)
+ ϕ1(t)x + c2

µ1(t)
exp

(
1

2
s1t − λ1x

)
(67)

where the functionsϕ1 andµ1 are presented in formulae (65) and (66).
System (39) contains the subsystem

dγ

dt
= γ 2ϕ1

dϕ0

dt
= −ϕ2

1 + s1ϕ0+ s0
dϕ1

dt
= s1ϕ1

(68)

that is integrated and has a general solution in the explicit form

γ = (γ0− c1s
−1
1 exps1t)

−1

ϕ0 = 1

s1
(−s0+ c0s1 exps1t − c2

1 exp 2s1t)

ϕ1 = c1 exps1t

(69)

if s1 6= 0 and

γ = (γ0− c1t)
−1

ϕ0 = (s0− c2
1)t + c0

ϕ1 = c1

(70)

if s1 = 0 andγ0 is an arbitrary constant. Then the following ODEs

dϕ2

dt
=
[
s1− 2c1γ exps1t + γ

2

s1
(−s0+ c0s1 exps1t − c2

1 exp 2s1t)

]
ϕ2 (71)

and

dϕ2

dt
= [γ 2(c0+ (s0− c2

1)t)− 2γ c1]ϕ2 (72)

for finding ϕ2(t) are obtained, respectively.
So, ansatz (28) generates the following family of solutions of equation (13) for

λ1 = q = 0, r = −1:

U = 1

s1
(−s0+ c0s1 exps1t − c2

1 exp 2s1t)+ c1x exps1t + ϕ2(t) exp

(
x

γ0− c1s
−1
1 exps1t

)
(73)
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if s1 6= 0 and

U = c0+ (s0− c2
1)t + c1x + ϕ2(t) exp

(
x

γ0− c1t

)
(74)

if s1 = 0. In (73) and (74), the functionϕ2 is a solution of linear ODEs (71) and (72),
respectively.

Finally, by solving system (38), one can make sure that ansatz (29) generates the
following three-parameter family of solutions of equation (13) atλ1 = q = 0

U = exp

(
s1t + 2

∫
ϕ2(t) dt

)[
c0+

∫ [
s0 exp

(
− s1t − 2

∫
ϕ2(t) dt

)
+rc2

1 exp

(
s1t + 2(1+ 4r)

∫
ϕ2(t) dt

)]
dt

]
+c1x exp

(
s1t + (2+ 4r)

∫
ϕ2(t) dt

)
+ ϕ2(t)x

2 (75)

wheres1 6= 0 and

ϕ2 =


c2s1 exps1t

(2+ 4r)(1− c2 exps1t)
if r 6= − 1

2

c2 exps1t if r = − 1
2.

(76)

In the cases1 = 0, we obtain the family of the solutions

U = (c2− t)−1

[
c0|c2− t | 2r

1+2r − s0 1+ 2r

2+ 2r
(c2− t)2+ 1+ 2r

2

(
c1+ x

1+ 2r

)2
]

r 6= −1,− 1
2 (77)

to the equation

Ut = UUxx + rU2
x + s0. (78)

In the casesr = −1 andr = − 1
2, the solutions

U = s0(t − c2) log |t − c2| + c0(t − c2)+ (c1+ x)2
2(t − c2)

(79)

and

U = c0 exp(2c2t)+ c2

(
x + c1

2c2

)2

− s0

2c2
(80)

are obtained, respectively.
The family of solutions (77) forc1 = 0 gives the exact solution

U = c0(c2− t) −1
1+2r − s0 1+ 2r

2+ 2r
(c2− t)+ x2

(2+ 4r)(c2− t) . (81)

On the other hand, (78) and (81) are reduced by the substitution

T (τ, x) = U 1
µ−1 τ = t

µ
r = 1

µ− 1
s0 = b(1− µ)

µ
(82)

to the equation

Tτ = (T µ)xx − bT 2−µ µ 6= 0, 1 (83)
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and to the solution

T µ−1 = c0(c2− µτ)
1−µ
1+µ + b(µ

2− 1)

2µ2
(c2− µτ)+ µ− 1

2(1+ µ)
x2

(c2− µτ) (84)

respectively. This solution was obtained in [24] as a generalization of the known Barenblatt–
Zeldovich solution (see (84) forb = 0) [23] for the nonlinear heat equation

Tτ = (T µ)xx µ 6= 0, 1. (85)

It is easily seen that solutions (55), (58), (60)–(62), (64), (67), (73), and (74) are not
of the form (17). Therefore, if the maximal algebra of invariance of equation (13) is the
two-dimensional algebra (16) then they are just non-Lie solutions of this nonlinear equation.
Taking into account the results of papers [16, 28], it is easily seen that the nonlinear equation
(13) is invariant with respect to the trivial algebra (16) if (i)λ1s0s1 6= 0, (ii) λ1 = 0, s0s1 6= 0
or (iii) λ1 = 0, s0q 6= 0 (other coefficients are arbitrary parameters). In these cases the
above-found solutions cannot be obtained using the Lie method.

Of course, if some coefficients vanish in equation (13) then one can obtain the nonlinear
equation with the three-, four- or five-dimensional Lie algebra (for details see [16, 28]). For
such equations, one has to prove additionally that the constructed solutions are non-Lie
solutions. For example, equation (83) is invariant with respect to the 3-dimensional Lie
algebra [28]. Generally speaking, it has been additionally proved that solution (84) cannot
be obtained using the classical Lie procedure (see, e.g. [2–7]). Note that the Barenblatt–
Zeldovich solution is a similarity solution and it can be obtained using the Lie symmetry
of equation (85).

It turns out that it is a non-trivial problem to construct just non-Lie exact solutions for
nonlinear PDEs with non-trivial Lie symmetries. Indeed, a new non-Lie ansatz does not
guarantee construction of new non-Lie exact solutions, if a nonlinear PDE has a non-trivial
symmetry. For example, let us consider equation (13) whenr = 0, s0 = 0, q = 2

9λ
2
1 6= 0,

i.e.

Ut = UUxx + λ1UUx + s1U + 2
9λ

2
1U

2. (86)

This equation has the four-dimensional Lie symmetry [19] and the following family of
solutions

U = − 9

2λ2
1

s1+ c1 exp(− 1
3λ1x)+ c2 exp(− 2

3λ1x)

1+ a0 exp(−s1t) (87)

that was found in [19] using the Lie method. On the other hand this family of solutions is
obtained from (57) forr = 0, s0 = 0, q = 2

9λ
2
1 6= 0. Thus,the non-Lie ansatz(26) generates

the Lie solutions(87) for the nonlinear equation (86).

4. Non-Lie exact solutions of the nonlinear equations (9) and (10)

It is easily seen that using substitution (14), any family of the above-found solutions for the
nonlinear equation (13) is transformed in a corresponding family of solutions for equations
(9) or (10). In table 1, we list the families of the exact solutions of equations (9) and (10)
that were found in this paper.

Some of the found solutions can be applied to solving the Dirichlet and the Neumann
boundary-value problems for nonlinear heat equations (9) and (10). For example, the
solution 1 (see table 1) satisfies the zero boundary condition in the domainx ∈ (−∞,+∞)
for any α < 0, α 6= −1. In the case of the zero Neumann condition, this solution can be
applied for anyα < 0, α 6= −1 or α > 1. Note that the zero Neumann condition (the
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Table 1.

Equation Family of solutions Remark

1. (9) atλ1 = 0 [ϕ0(t)+ exp[s1t + q α+2
α+1

∫
ϕ0(t) dt ] ϕ0(t) is a solution of (59)

q 6= 0, α 6= −1 ×[c1 exp(−γ1x)+ c2 exp(γ1x)]] 1/α γ 2
1 = −αq/(1+ α) > 0

2. (9) atλ1 = 0 [ϕ0(t)+ exp[s1t + q α+2
α+1

∫
ϕ0(t) dt ] ϕ0(t) is a solution of (63)

q 6= 0, α 6= −1 ×[c10 cos(|γ1|x)+ c11 sin(|γ1|x)]]1/α γ 2
1 = −αq/(1+ α) < 0

3. (9) atλ1 = 0 [ϕ0(t)+ c1µ(t)
− α+2
α+1 exp( 1

2s1t ± γ1x)]1/α ϕ0(t), µ(t) see in (54), (56)
q 6= 0, α 6= −1 γ 2

1 = −αq/(1+ α) > 0

4. (9) atα = −1 [ 1
s1
(−s0 + c0s1 exps1t − c2

1 exp 2s1t) γ = s1
γ0s1−c1 exps1t

,

s1 6= 0, λ1 = q = 0 +c1x exps1t + ϕ2(t) exp(γ (t)x)]−1 ϕ2(t) is solution of (71)

5. (9) atα = −1 [c0 + (s0 − c2
1)t + c1x+ γ (t) = 1

γ0−c1t

s1 = λ1 = q = 0 +ϕ2(t) exp(γ (t)x)]−1 ϕ2(t) is solution of (72)

6. (9) atα = −2 [c0 exp(2c2t)+ c2(x + c1
2c2
)2 − s0

2c2
]−1/2 c2 6= 0

s1 = λ1 = q = 0 ·

7. (9) atα = −2 exp(− 1
2s1t)[s0M(t)

∫ dt
M(t) exp(s1t)

M(t) = exp[2c2
s1

exp(s1t)]

s1 6= 0, λ1 = q = 0 +c0M(t)+ c2(x + c1
2c2
)2]−1/2 c2 6= 0

8. (9) for α = −1 [s0(t − c2) log |t − c2|
s1 = λ1 = q = 0 +c0(t − c2)+ (c1+x)2

2(t−c2)
]−1 ·

9. (9) for α 6= −1,−2 (c2 − t)−1/α [−s0 α+2
2α+2(c2 − t)2+

s1 = λ1 = q = 0 c0|c2 − t |
2
α+2 + α

2(α+2) (x + c1
α+2
α
)2]1/α ·

10. (10) for log[ϕ0(t)+ 1
µ(t)

[c1 exp( 1
2s1t + γ1x) ϕ0(t), µ(t) see in (54), (56)

λ2
1 − 4q 6= 0 +c2 exp( 1

2s1t + γ2x)]]
1
β γ1,2 = 1

2(±(λ2
1 − 4q)1/2 − λ1)

11. (10) forλ1 6= 0 log[ϕ0(t)+ 1
µ(t)

[c1 exp( 1
2(s1t − λ1x)) ϕ0(t), µ(t) see in (54), (56)

λ2
1 − 4q = 0 +c2x exp( 1

2(s1t − λ1x))]]
1
β

12. (10)λ1 6= 0, q = 0 log[
exp( 1

2 s1t)

µ1(t)
(c0 +

∫ s0µ1(t)

exp( 1
2 s1t)

dt) ϕ1(t), µ1(t) see in (65), (66)

+ϕ1(t)x + c2
µ1(t)

exp( 1
2s1t − λ1x)]

1
β

zero flux on the boundary) is a typical request for describing actual processes in physics,
chemistry, and biology. Two examples are considered below.

Example 1.Let us consider the following equation arising in mathematical biology [25]:

Tt = [(1+ λ0T )Tx ]x + λ2T − λ3T
2 (88)

that in the caseλ0 = 0, λ2 = λ3 coincides with the well known Fisher equation [26]

Tt = Txx + λ2T − λ2T
2. (89)

The known soliton-like solution of the Fisher equation was obtained in [27]. Note that this
solution can be also found using the suggested method.
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It turns out that the caseλ0 6= 0 is very specific. Indeed, equation (88) is reduced
to form (9) by the local substitution 1+ λ0T → T . So the solution 1 (see table 1) at
α = 1, c1c2 = 0 gives the following solutions of equation (88):

T = λ2

2λ3

[
1+ tanh

λ2(t − c0)

2

]
+ c2

exp (2λ3+λ0λ2)t

4λ0

(coshλ2(t−c0)

2 )3/2
exp

(√
λ3

2λ0
x

)
(90)

and

T = λ2

2λ3

[
1+ tanh

λ2(t − c0)

2

]
+ c1

exp (2λ3+λ0λ2)t

4λ0

(coshλ2(t−c0)

2 )3/2
exp

(
−
√
λ3

2λ0
x

)
(91)

where c0, c1, c2 are arbitrary constants. The solutions of the form (91) have attractive
properties: any solutionT ∗ holds the conditionsT ∗ → λ2

λ3
if t → ∞ and λ3 < λ0λ2;

T ∗ → λ2
2λ3

[1 + tanhλ2(t−c0)

2 ] < λ2
λ3

if x → +∞, λ0λ3 > 0. Taking into account these
properties, we obtain the following theorem.

Theorem 2.The bounded exact solution of the boundary-value problem for the generalized
Fisher equation

Tt = [(1+ λ0T )Tx ]x + λ2T − λ2T
2 λ0 > 1, λ2 > 0 (92)

with the initial condition

T (0, x) = C0+ C1 exp

(
−
√
λ2

2λ0
|x|
)

(93)

and the Neumann conditions

Tx(t,−∞) = 0 Tx(t,+∞) = 0 (94)

is given in the domain(t, x) ∈ [0,+∞)× (−∞,+∞) by the formula

T = 1
2

[
1+ tanh

λ2(t − c0)

2

]
+ c1

exp λ2(2+λ0)t

4λ0

(coshλ2(t−c0)

2 )3/2
exp

(
−
√
λ2

2λ0
|x|
)

(95)

whereC0 = 1
2[1+ tanh−λ2c0

2 ], C1 = c1(cosh−λ2c0
2 )−3/2, andc1 > 0.

Remark 6.Solution (95) is not analytic atx = 0. However, the second derivative is well
defined at this point sinceTxx|x→0+ = Txx|x→0− . Thus this solution satisfies the equation (92)
at x = 0 as well.

Example 2.Let us consider the following reaction–diffusion equation with exponential
nonlinearities:

Tt = (exp(T ) Tx)x + s0 exp(−T )+ s1− s2 exp(T ). (96)

This equation can be applied for describing processes with strong nonlinear diffusion (heat
conduction) and reaction (dissipation). In a particular case, using the known series expansion

exp(T ) = 1+ T + T
2

2
+ · · ·

exp(−T ) = 1− T + T
2

2
− · · ·

(97)

one can obtain the generalized Fisher equation (92) as some approximation from
equation (96).
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If one employs the family of solutions 10 (see table 1) atβ = 1, λ1 = 0, q = −s2,
c1 = c2, c0 = 0 in the case of equation (96), the following theorem can be formulated.

Theorem 3.The exact solution of the boundary-value problem for the nonlinear equation
(96) with the initial condition

T (0, x) = log

[
s1

2s2
+ c1

2
cosh(

√
s2x)

]
(98)

and the Neumann conditions

Tx(t, 0) = 0 Tx(t,+∞) = √s2 (99)

is given in the domain(t, x) ∈ [0,+∞)× [0,+∞) by the formula

T = log

[
s1

2s2
+
√
D

2s2
tanh

√
Dt

2
+ c1

1+ exp(
√
Dt)

cosh

(
s1+
√
D

2
t +√s2x

)]
(100)

wherec1 > 0, s1 > 0, s2 > 0, D = s2
1 + 4s0s2 > 0.

Note that in the cases2 < 0 periodic solutions of (96) are obtained and such solutions
are potentially interesting for application as well.

5. Discussion

Thus, a constructive method for obtaining new non-Lie ansätze and exact solutions of some
classes of nonlinear diffusion equations is developed in this paper. The method is based on
the consideration of a fixed nonlinear PDE together with anadditional generating condition
in the form of a linear high-order ODE. With the help of this method new non-Lie ansätze
and solutions were obtained for the nonlinear equations (13), (9) and (10). Some of the
found solutions can be applied for solving the boundary-value problems for the nonlinear
reaction–diffusion equations (9) and (10) and the corresponding examples have been given
in section 4.

If additional generating condition does not contain the variablet then it generates the
following ansatz with separated variables

U = ϕ0(t)g0(x)+ · · · + ϕm−1(t)gm−1(x) (101)

that can be generalized (see substitution (2)) to the form

A0(U) = ϕ0(t)g0(x)+ · · · + ϕm−1(t)gm−1(x). (102)

In particular cases ansätze (101) and (102) were used for construction of new solutions
to nonlinear diffusion equations in the recently published papers [29–33]. The families of
solutions of the form

A0(U) = ϕ0(t)+ ϕ1(t)x + · · · + ϕm−1(t)x
m−1 m = 3, 4 orm = 5 (103)

of equation (1) forB(U) = 0 with the power and exponential nonlinearities were constructed
in these papers (see also the earlier paper [34]). Note that all those solutions can be found
using theorem 1 for the case of the additional generating condition

dmU

dxm
= 0 m = 3, 4 orm = 5. (104)

A generalization of ansatz (103) for the multidimensional case was suggested in [29, 32].
The simplest cases of ansätze (101) and (102) form = 2, gi 6= xi were used for

construction of new solutions to nonlinear diffusion equations in [35]. In the casesm >
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2, gi 6= xi the problem of finding solution is not easy. Ansätze (26) forγ1,2(t) = constant
and (30) forD(t) = constant,α2(t) = constant were used for finding exact solutions
of nonlinear heat equations in the papers [31–33], where the method of linear invariant
subspaces was suggested. That method is reduced to finding solutions in the form (101) or
(102).

It is clear that any additional generating condition (18) form > 2 generates thehigh-
order operator

α1(t, x)
∂

∂x
+ · · · + αm(t, x) ∂

m

∂xm
= 0. (105)

The structure of this operator differs from that of any operator of the non-classical symmetry
(the conditional symmetry) [36–38] (in [7, 39] one can find a wide list of the references).
Indeed, any operator of the non-classical symmetry isthe first-order operator.

In the recently published papers [40–42] a generalization of the non-classical symmetry
is suggested via introduction notions of so-called heir-equations and of the conditional Lie–
Bäcklund symmetry. It is easy to check that the majority of the solutions found in [40–42]
for nonlinear diffusion equations can be constructed using linear conditions of the form (25)
for α1, α2 = constant and the corresponding local substitutions for the unknown function
U(t, x). On the other hand it means that this method can be connected with the conditional
symmetry operators of the high-order.

The suggested method is based on the idea that was applied for the construction of the
fundamental solution to the classical multidimensional heat equation in [8]. This solution
has been found with the help of an additional linear system of ODEs containing the timet

as a parameter. The method enables us to construct solutions of the form

A0(U) = ϕ0(t)g0(t, x)+ · · · + ϕm−1(t)gm−1(t, x) (106)

i.e. in a more general form than (101) and (102). For an illustrative example, consider the
nonlinear reaction–diffusion equation with a convection term

Tt = [T αTx ]x + λ1(t)T
αTx − s1T − s0T 1−α α 6= 0 (107)

that can be interpreted as a generalization of the Fisher and Murray equations [14]. Since
it is the particular case of (9) one can reduce this equation to the form

Ut = UUxx + 1

α
U2
x + λ1(t)UUx − αs1U − αs0 (108)

using the substitutionU = T α. It turns out that equation (108) forλ1(t) = −(1+ 1
α
)γ (t)

is reduced by the ansatz (28) to the following system of ODEs

dγ

dt
= − 1

α
γ 2ϕ1

dϕ0

dt
= −

(
1+ 1

α

)
γ ϕ0ϕ1− αs1ϕ0+ 1

α
ϕ2

1 − αs0
dϕ1

dt
= −αs1ϕ1−

(
1+ 1

α

)
γ ϕ2

1

dϕ2

dt
=
[
− 1

α
γ 2ϕ0+

(
1

α
− 1

)
γ ϕ1− αs1

]
ϕ2

(109)

for finding unknown functionsγ (t) andϕi, i = 0, 1, 2. It is easily seen that in this case
the functionγ (t) 6= constant ifϕ1 6= 0. Solving the system of ODEs (109), we obtain
the family of exact solutions that are not the ones with separated variables (101). Note
that in the caseα = −1, the system of ODEs (109) is integrated in terms of elementary
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functions (see formulae (69)–(72)) and the families of solutions (73) and (74) are found.
In the recently published papers [19, 43], one can find similar examples for the nonlinear
diffusion system of equationsdescribing the process of precipitant-assisted protein crystal
growth.
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