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Abstract. A constructive method for obtaining new exact solutions of nonlinear evolution
equations is further developed. The method is based on the consideration of a fixed nonlinear
partial differential equation together win additional generating conditiom the form of a

linear high-order ordinary differential equation. Using this method new non-Liatz@sand

exact solutions are obtained for two classes of diffusion equations with power and exponential
nonlinearities, which describe real processes in physics, chemistry, and biology. The analysis
of the found solutions and the relation of the proposed method to some approaches, which have
been suggested in several recently published papers, are presented.

1. Introduction

Nonlinear second-order evolution equations (systems of equations) describe various
processes in physics, chemistry and biology (heat and mass transfer, filtration of liquid,
diffusion in chemical reactions etc). Construction of particular exact solutions for these
equations remains an important problem. Finding exact solutions that have a physical,
chemical or biological interpretation is of fundamental importance. The well known
principle of linear superposition cannot be applied to generate new exact solutions to
nonlinear partial differential equations (PDEs). Thus, the classical methods are not
applicable for solving nonlinear PDEs. Of course, a change of variables can sometimes
be found that transforms a nonlinear PDE into a linear equation, but finding exact solutions
of most nonlinear PDEs generally requires new methods.

The most popular methods for construction of exact solutions to nonlinear PDEs are the
method of inverse scattering and the Lie method. In this paper we do not consider the first
one since it is only efficient for nonlinear PDEs with a very specific structure (see [1]). The
Lie method [2—7] is based on using the Lie symmetry of a given PDE for the construction
of its exact solutions. Although the technique of this method is well known, new results
are constantly obtained for nonlinear PDEs with non-trivial Lie symmetries.

On the other hand it is well known that some very popular nonlinear PDEs have poor
Lie symmetry. For example, the well known Fisher equation is invariant only under the
time and space translations. The Lie method is not efficient for such PDEs since in these
cases it enables one to constructémrs and exact solutions, which can be obtained without
using this cumbersome method. There are two ways to find a solution to this problem:
(1), instead of PDEs with poor Lie symmetry, to find their analogues with the non-trivial
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Lie symmetry; (2), to suggest new approaches for construction of neatzenand exact
solutions that are not based on the search for Lie symmetry of a given PDE.

The first way was used in a series of our papers in collaboration with Fushchych [8-11]
(see also [7]), in which all nonlinear generalizations of a classical heat (diffusion) equation
that completely or partially preserve its Lie symmetry were described.

In the present paper we use the second way. Let us consider a nonlinear diffusion
equation with a convection term of the form

T, = [A(D)T:]: + B(T)T: + C(T) @

whereT = T(t, x) is the unknown function and(7T), B(T), C(T) are arbitrary smooth
functions. The indices andx denote differentiation with respect to these variables.
Equation (1) generalizes a number of the well known nonlinear second-order evolution
equations, describing various processes in physics [12], chemistry [13] and biology [14]
(see [15] for a wide list of references).
It has been shown [16] that equation (1) by the local substitution

T—U-= / A(T)dT = Ao(T) 2)
is reduced to the form
Urx = Fo(U)U; + F1(U)U; + F>(U) )
where the functiongo(U), F1(U), F»(U) are easily determined via the formulae
Fo = L T=A;*(U) P = _@ T=A;Y(U) F, =—C(T) T=A;'(U) (4)
A(T) 0 A(T) 0 0

and Agl is the inverse function talq(T).

The Lie symmetry of equation (3) was completely described in [16]. According to
the results of [16] any Lie ansatz, which reduces equation (3) to an ordinary differential
equation (ODE), can be obtained by solving the following Lagrange system:

dr dx du

)~ ENt.x)  nolt,x) +m(t, U ©
where&®, g1, n = no + n1U are known coefficients of the infinitesimal operator

X = €%, + £, + ndy. (6)
By solving equation (5) one can obtain a Lie ansatz of the form

U = go(t, x) + ¢p(w)g1(t, x) (1)

whereg(w) is a hew unknown functionp = w (¢, x) is the invariant variable, angh(z, x)

and g1 (¢, x) are fixed functions determined W, £1, 7o and ;. Note that the form (7)

is the typical form for Lie ar&tze of any quasilinear PDE (see, e.g. [7]). So substituting
ansatz (7) into equation (3), one obtains a first- or second-order ODE, from which function
¢(w) can be found. Taking into account substitution (2), one can see that the general form
of Lie angtze for equation (1) is given by

Ao(T) = golt, x) + p(@)g1(t, x). C)

Ansatze with structures differing from (7) and (8) are calfexh-Lie anatzefor PDEs of the
forms (3) and (1), respectively. Of course, the form of non-Lieataes essentially depends
on the form of a given PDE.

It turns out that it is possible to construct a set of non-Liedtres with principally
different structure for some wide subclasses of nonlinear equations of the form (1) and (3).
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With this in mind, an approach to the construction of non-Lieaére and exact solutions
was suggested in [17,18] that is based on the consideration of a given nonlinear PDE
together withan additional generating conditiom the form of a high-order ODE. This
approach has been applied in [17-19] for obtaining solutions of some nonlinear evolution
systems, which describe real processes in physics and chemistry.

In this paper, we study in detail two nonlinear equations of the form (1), namely

T, = (TT)x + MT°T, + O%(SOTL“ + 51T + CITH“) 9
and
1
T = (exp(BT)T,)x + Arexp(BT) Ty + E(SO exp(—BT) + s1+ g exp(BT)) (10)

whereT = T(¢, x) is an unknown function andg # 0, A1, so, s1, ¢ € R. First, note that
equation (9) is reduced by the substitution

u=re* a#0

to the equation
1
U =UUyg, + =U? + MUU, + 50 + 51U + qU>. (11)
o

Analogously, the nonlinear evolution equation with exponential nonlinearities (10) is
reduced by the substitution

U=exppT)  B#0
to the equation

Uy =UUs, + 2MUU, + 50+ 51U + qU?. (12)
Thus, hereinafter we consider the nonlinear equation

U =UUy, 4+ rU2 4 2UU; + 5o+ 51U + qU? (13)

which in the cases = % # 0 andr = 0 is locally equivalent to equations (9) and (10),
respectively. In a particular case, any solutigi(z, x) of (13) generates a solution of the
form

e r#0
= llogU* r=0 (14)
B
to equations (9) and (10), respectively.

In section 2, the method of additional generating conditions is applied to the construction
of new non-Lie angtze of equations of the form (13). In section 3, new multiparameter
families of solutions for nonlinear equations of the form (13) are constructed.

In section 4, new exact solutions of the nonlinear equations (9) and (10) are tabulated.
Two types of the obtained solutions are applied for solving some nonlinear boundary-value
problems.

Finally, in section 5 analysis of the found solutions, and the relationship of the proposed
method with some approaches which have been suggested in several recently published
papers, is presented.
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2. A constructive method for obtaining non-Lie ansitze and new exact solutions of
the nonlinear equation (13)

Here an approach to the construction of exact solutions is presented that is based on the
consideration of a given nonlinear PDE together with an additional condition in the form
of an ODE.

Consider the following class of nonlinear evolution second-order PDEs

Uy = MUU,, +rU? + 2UU, + qU? 4 51U + 50 (15)

where coefficientsio, r, A1, ¢, s1 and sg are arbitrary constants. It is easily seen that the
class of PDEs (15) contains the nonlinear equation (13) as a particular case.

If coefficients in (15) are arbitrary constants then this equation is invariant with respect
to the translation transformations generated by operators

d d
p =2 = 16
" ot dx (16)
and one can find plane wave solutions of the form
U =Ut(kx + vt) v,k €R. a7

But we do not construct such solutions as many papers have been devoted to the construction
of plane wave solutions for various nonlinear PDEs of the form (1) (see, e.g. [15, 20, 21]
and references therein).

Hereinafter we consider (15) together with théditional generating conditions the
form of linear high-order homogeneous equations, namely

du da-lu  d"vu
t’ _ PP m— [’ e — _— 0 18

oyt x) - o ) e (18)
wherea(t, x), ..., a,_1(¢, x) are arbitrary smooth functions and the variatile considered
as a parameter. It is known that the general solution of (18) has the form

U = @o()go(t, x) + -+ + @m—-1()gm—1(t, x) (19)
wherego(t), p1(t), ..., ¢,—1(t) are arbitrary functions angh(z, x) = 1, g1(¢, x), ..., gn_1
(¢, x) are fixed functions that form a fundamental system of solutions of (18). Note that in
many cases the functiong (¢, x), ..., gn_1(t, x) can be expressed in an explicit form in

terms of elementary ones.

Let us consider relation (19) as an ansatz for PDEs of the form (15). It is important
to note that this ansatz contains yet-to-be determined functiong,i = 1,...,m. This
enables us to reduce the given PDE of the form (15) to a quasilinear system of ODEs of
the first order for the unknown functions. It is well known that such systems have been
investigated in detail.

On the other hand equation (15) for= 0 is a particular case of equation (3) and for
r # 0 is locally equivalent to this equation. In fact, equation (15)fog 0 is reduced
by the local substitutions — iot, Ag # 0 andU = T%,« = 1/r (see the introduction)
to equation (9) that is a particular case of equation (1) . Thus, the general forms of Lie
anstze for equation (15) are given by (7) or (8). Therefore ansatz (19 for2 is just the
non-Lie ansatz for any nonlinear equation of the form (15) since it has a structure different
from (7) and (8).

Let us apply ansatz (19) to the equation (15). Indeed, calculating with the help of
ansatz (19) the derivativds,, U,, U,, and substituting them into PDE (15), one obtains the



Solutions of nonlinear reaction—diffusion—convection equations 8183
following expression:

©0:80+ ¥1.:81+ -+ Pm—1:8m-1 = ¢0(s180 — go.r) + * + Pm—-1(518m—1 — &m-1.)
+5(0808o.xx + 84, + *18080.x + 480
@2 (M08m—18m—1ax + rgz%z—l,x + MEm-18m-1.x + 982 1)
+¢091(208081.xx + *08180.xx + 218081« + A18180.x + 2rgo.x81.x + 298081)
+90p2(208082,xx + 208280,xx + 118082« + 218280« + 2rgo.x82.x + 298082)
+ -+ On—20m-1(A0&m—28m—-1.xx + 108m—-18m—2.xx + A1&m—28m—1.x
FA18m-18m—2.x + 2rgm—2.x8n—1.x + 248m—28m-1) + So (20)
where the indices and x of functions ¢;(¢#) and g;(z,x), i = 0,1,...,m — 1, denote
differentiation with respect to andx. If one groups similar terms in accordance with the

powers of the functions; (¢), then sufficient conditions for reduction of this expression to
a system of ODEs can be found. These sufficient conditions have the following form:

518 — &i.t = &iy Qi (1) (21)

A08i&ixx + 1 (8ix)? + Mgigix +q(81)? = gi, Riiy (1) (22)

20(8igjxx + 8i8ivxx) + 2rgix&jx + A1(8igjx + 88ix) + 29818 = & T} (1) i<
(23)

where coefficient®d;;,, R, Ti? on the right-hand side are defined by the expressions on
the left-hand side.
With the help of conditions (21)—(23), the following system of ODEs is obtained

do; _ 2 i

o Qii¢i, + Riyi(@i)” + T, 00,90, + i050 (24)
to find the unknown functiong;,i = 0, ...,m — 1. In the right-hand sides of relations
(21)-(23) and (24), a summation is assumed from @& te1 over the repeated indices i»
andsg; o = 0, 1 is the Kronecker symbol. So, we have obtained the following statement.

Theorem 1 Any solution of system (24) generates the exact solution in the form (19) for
nonlinear PDE (15), if the functiong,i =0, ..., m — 1 satisfy conditions (21)—(23).

Remark 1.Equation (15) fony = 0 can be considered as a generalization of the Hamilton—
Jacobi equation. It is well known that the problem of construction of exact solutions in
the explicit formfor the Hamilton—Jacobi equation is a non-trivial one (see, e.g. [7]). The
suggested method can be applied to the construction of explicit solutions of equation (15)
for 1o = 0 too. In the case.q # 0, equation (15) is reduced to the form (13) by the local
substitutionr — Aof.

Remark 2.The suggested method can be realized for systems of PDEs (see the examples
in [17-19]) and for PDEs with derivatives of second or higher orders with respecnd
x. In the last case one will obtain systems of ODEs of second or higher orders.

Remark 3.If the coefficientsig, A1, so, s1 andg in equation (15) are smooth functions of
the variabler then one can also construct families of exact solutions. But in this case the
systems of ODEs with time-dependent coefficients are obtained.

Since we suggest a constructive method for finding new non-Liétamsand exact
solutions, its efficiency will be shown by the examples below.
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In fact, let us use theorem 1 for the construction of non-Lie solutions of equation (13).
Consider an additional generating condition of the third order of the form
v U
az e =0 (25)
which is the particular case of (18) far = 3. Condition (25) generates the following chain
of the anétze:

du
Oél(t)a + (1)

U = go(t) + @1(t) explys(t)x) + @2(t) explya(t)x) (26)
if y12(0) = 3(£(a3 — 4a1)"? — @) andyr # y2;

U = go(t) + g1(t) exply (1)x) + x¢a(1) exply (1)x) (27)
ify1=1y2=y #0;

U = ¢o(t) + @1(t)x + @2(t) €Xply (1)x) (28)
if oy =0;

U = go(t) + ¢1()x + p2(1)x* (29)

if a1 =ay=0.
Remark 4.In the caseD = o2 — 4a; < 0, one obtains complex functiong = y5 =
2(£i(—D)Y2 — az),i? = —1 and then ansatz (26) is reduced to the form

a2X

U = got) + [Y1(1) cog3 (D)%) + a(0) sin((— D) V20) exp (-5~ ) (30)

wherego(t), ¥1(1), ¥2(t) are yet-to-be determined functions.

By substituting the functiongg = 1, g1 = exp(y1(t)x), g2 = exp(y2(#)x) from ansatz (26)
into relations (21)—(23), one can obtain

Qo= Q11 =02 =ys1 Roo=¢q

dqr r (31)
Tlozzm Th=Ta=4q 1+1+r
and the following relations
Rii, = Qii, = T,ljl =0 (32)

for all combinations of the indices, i1, j = 0,1,2 andk = 1,2 not listed in (31).
Simultaneously the following constraints spring up:

r=0 ) =3=0]- 49" - 1) (33)
or

M=0  ya0) =£(=¢/A+rY?  r# -1 (34)
With the help of coefficients (31), (32), system (24) is reduced to the form

dgo

e qgoé + 5190 + So

d

% = 5101 + 9091 (35)

d

2= 5192 + qpop2

dr
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in the case of constraint (33) and to the form

doo 2 drq
o 9% + s190 + 5o + 14,72

do r

L 14+ —

4 =t +q ( + T r) Yop1 (36)
d(pz r

e 14 ——

O slgpz—i-q( +1+r>§0o<ﬂ2

in the case of constraint (34).

By substituting the functiongo = 1, g1 = exp(y (t)x), g2 = x exp(y (1)x) from ansatz
(27) into relations (21)—(23), the corresponding values of the functionsQ;;,, Tl.{l, are
obtained, for which system (24) coincides with the system of ODEs (35). But in this case
we obtain the constraints= 0, A3 — 4g = 0 andy = —11/2.

Similarly, we obtain with the help of ansatz (28) the following system of ODEs

dgo

o A1@o@1 + S1¢0 + So
do1
ol A@Z + 5101 (37)
dos
— =A s
ar 190192 + $192
to find the unknown functiong;,i = 0,1,2. In this case we obtain the constraints

r=g=0andy = —A;.
Finally, ansatz (29) fok; = ¢ = 0 gives the following system of ODEs

dgo

o 20002 + 5100 + S0 + r?

d

% = 2+ 4r)p192 + 5101 (38)
d

= = @+4)05+ 5102

Thus, any ansatz from set (26)—(29) can be applied for the reduction of the nonlinear
PDE (13) to a system of first-order ODEs. But in all cases additional constraints for
coefficientsr, A1, so, 51, ¢ € R spring up. These constraints follow from relations (21)—(23)
and they are necessary for the above-mentioned reduction.

On the other hand, theorem 1 gives ordufficient conditions for such reduction.

In some cases, noting additional relations between the fundamental system elements
go(t,x) = 1, g1(¢, %), ..., gn-1(t, x), it is possible to find simpler sufficient conditions

for the above-mentioned reduction. Let us give an example in the case of ansatz (28).
Noting thatg,, = y‘zc(’j—fglgz,“, one can transfer this term from relations (21} 2 into

(23),i =1, j = 2, so that two relations in (21)—(23) take new form. Taking into account
this circumstance for ansatz (28), one can find at once thercase-1 andi; = ¢ =0
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when the nonlinear PDE (13) is reduced to the system of first-order ODEs

d_ v
dr !
dgo
e —¢f + 5190 + 50
(39)
der _ oy
dl 1¥1
dg>
o —2y Q192 + 51902 + V20002

It is easily seen that in this case the functip() # constant and the first equation in (39)
is an additional condition for obtaining the functign
By analogy with the additional generating condition (25), we can consider the fourth-
order condition of the form
2 3 4
al(t)?j—[j + az(t)ix—lzj + Olg(t)?jTZ + :lx_l‘{ =0. (40)
This condition generates a chain of the &zs. Although there are other interesting cases,
probably the most non-trivial one occurs when we will consider the ansatz

U = @o(t) + @1(t) eXplyrx) + @2(t) exply2x) + ¢3(1) explysx) (41)

wherego(t), .. ., ¢3(t) are yet-to-be determined functions apd y», y3 are someunequal
constants anghy,y3 # 0. It turns out that it is possible to reduce equation (13) with the
help of (41) to a system of ODEs of the form (24) only in a special case. Indeed, by
substituting the functiongg = 1, g1 = exp(y1x), g2 = exp(y2x) and gz = exp(ysx) from
ansatz (41) into relations (21) at= 0, 1, 2, 3, one obtains

Qoo= Q11=0xn=03:==s5 Qii, =0,i #i1. (42)
Substitution of the functiong;,i =0, ..., 3, into relation (22) ai = 0 gives
Roo =4q ROa =0 a = 1, 2, 3. (43)

In the cases = 1, 2, 3 relations (22) take the following form:

(L4 r)yZ + *1¥a + q] €XP2yax) = giy Raiy (1) a=123 (44)
where a summation is assumed from 0 to 3 over the repeated indickgurns out that
these relations can be fulfilled only in the case (i)

£(0f - 4@+ -y
Y12 =
2(1+7r)

va=3r2  0I—4g(L+n)1+r)#£0 (45)
or (i)
_1 _1
Y2=3nN 3= 3N (46)
wherey; is a root of the quadratic equatid + r)y? + A1y, +¢ = 0. It is easy to check
that constraint (46) is too strong because it is impossible to satisfy relations (23). Therefore,

the first case only is considered below.
Using relations (44) under constraint (45), one obtains

_Mr+3g
N 4
where the combinations of the indicés, i1) # (3, 2).

R3p R., =0 a=123 (47)
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Similarly, relations (23) ati, j) = (1, 2) and (i, j) = (2, 3) can be fulfilled only in the
casey1+y» =ys(i.e.qg = —6)& # 0) andr = —% (i.e. y1 = 3x1). Under such constraints,
it is easy to construct the coefficierit,él, namely:

T2, =182 TS = —6)2 7% = 1812 TS =542 (48)
and
T} =0 (49)

for all combinations of the indicesi;, j =0, 1, 2, 3 not listed in (48).
With the help of coefficients (42), (43), (47)—(49), system (24) is reduced to the form

dgo

5 =St 18020103 — BAZ05 + 50

dey 510

) — d1¢1

o (50)
2

o e + 180 2¢0p, — 61103

de3

5 =N 6)20003 + 541 20105.

Thus, according to theorem 1 any solution of the ODE system (50) generates an exact
solution of the form

U = go(t) + ¢1(1) eXp3r1x) + ¢2(1) eXp(—6A1x) + @3(r) eXp(—3r1x) (51)
for nonlinear equation
Uy = UUyx — 3U2 + MUU, + 50+ 51U — 625U°. (52)

It is easily seen that this equation is locally equivalent to the nonlinear diffusion equation
with the convection term

T, = (T 2T + MT 2T, — &(soT? + 51T — 6337 2), (53)

Therefore any solution of (52) can be transformed into a solution of the nonlinear heat
equation (53), using (14) far = _g_

3. Construction of the families of non-Lie exact solutions of the nonlinear
equation (13)

The systems of ODEs, which were obtained in the previous section, enable us to construct the
multiparametric families of non-Lie exact solutions of the nonlinear equation (13). Having
obtained the solutions of equation (13), we can easily construct solutions for the nonlinear
equations (9) and (10) (see substitution (14)).

So consider the system of ODEs (35). The first equation in (35) is autonomous and its
solutions essentially depend on the coeficients;, so. By solving this equation we obtain
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the following solutions [22]
2

co—t

V(- D)tan<\/Z D)(t—co))—sl if D<0

— 51 if D=0

(54)
29 | /D coth (?(co - t)) — 51 if (2gp0+51)> > D >0

@tanh(?(ae — t)) — 51 if D> (29¢0+s51)?>>0

whereD = sl 4soq .

Having solution (54), it is easy to find the general solution for the system of ODEs (35).
So, ansatz (26) generates the following three-parameter family of solutions of equation (13)
atr =0

1 1 1
=o(t) + — |:Cl exp( st + le) + ¢ exp(—slr + sz)} (55)

wu(r)
where
lco — 1 if D=0
cos[@(t — co)” if D<O0
wi) = sinh[‘/TB(co - t):H if 2900+s)2>D>0 (6
COSh[g(co — t):| if D> 2990+ s51)?>>0

and y1, = 3(£(A2 — 49)Y2 — x1). In (54)-(56) and hereinaftafy, c1, ¢, are arbitrary
constants. Note that in the cage> 0 the family of solutions (55) can be written in the
form

1 s1+~D s1+~D
U=q¢ot) + ——————— |c1exp| ————t +y1x | + coexp| —————1 + yox
@o(t) aoiexpﬁt[l p( > Vl) 2 D( > V2 )}
(57)

whereag = exp(cov/D).
By solving the system of ODEs (36), we obtain the following family of solutions of
equation (13) foh; = 0,r # —1

U=qo(t) + exp| sit z+1 (t) dt ex —4 ex —4
=@o(t) + P81+qr+1/<ﬂo crexp| — l—i—rx + c2exp 1+rx

(58)
wheregq(t) is an arbitrary solution of the integro-differential equation
d r r
d(io = q@5 + 5190 + 50+ 4cac 11 . eXp|:2Slt +2q (1+ m) / po(t) dt]. (59)

This equation is reduced to a nonlinear second-order ODE that cannot be integrated in
the general case. However, it is easily seen that in the gase= 0, integro-differential
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equation (59) is reduced to the first ODE in system (35). So, two-parameter families of
solutions

c2 1 —q
U=g@o(t) + ———7 exp| zs1f + X (60)
T oy ( VL )
and
c1 1 —q
U=g(t) + —— exp(—slt x) (61)
() 1 1+r

are obtained for; = 0 andc, = 0, respectively (the functiongg(r) and (7)) are defined
in (54) and (56)).

Remark 5.In the case = —3 1 integro-differential equation (59) is also reduced to an ODE.
However, the general solut|on of this ODE cannot be obtained in the explicit form since
the obtained ODE is the Riccati-type equation.

It is very important to note that in the cage = 0, q/(1+r) > 0,r # —1, we can
construct periodic solutions of the equation (13). In fact, it is easily seen that, if complex
constants & = c1g — ic11, 2c2 = c¢10 + ic11, than we obtain from (58) the following three-
parameter family of solutions of equation (13)

U = @o(t) 4+ exp| sit + 2r+1/ () dr | | croCOS A x | + c118in Lx
= ¢o P|s1 qr—l—l ©®o 10 11, 11 11,

(62)

wherecig, c11 are arbitrary real constants apg(z) is an arbitrary solution of the integro-
differential equation

d
% = q@3 + s190 + 50 + (3y + 611) eXp|:2slt +2q (1+ ?> /fﬂo(f) dl} .

(63)

The ansatz (27) generates the three-parameter family of solutions of equation (13) at
A?lz — 4¢ = 0 with the similar structure, namely:

= @o(t) + T |:cl exp<1(s1t — Apc)) + cox exp(%(slt - klx)):| (64)

where the functiong, and u are presented in formulae (54) and (56).
Similarly we obtain the general solution of system (37)

1
oo(t) = M(CO + SO/ /Ll—it) dl)

ma(t) exp(3s1t)
2
if s1=0
- IT §1
1 |s1] .
P1= 5 |s1] coth —(61 —1) ] —s1 if (2h101+51) > |s1] >0 (65)
1
|s1|tanh(ﬂ( c1 — l)) — 51 if |S]_| > (2)»1(,01+S1) >0
exp(2sit
a0y = ¢, 20

()
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where
ler — 1] if ;=0
| lsal .
,ul(t) _ Slnh|:7(61 - t):” if (2}\.1(01 =+ 51) > |Sl| >0 (66)
COSh[%(Cl - t)i| if |s1] > (2h191 + 51) > 0.

So ansatz (28) generates the following three-parameter family of solutions of equation
(13)atr =g =0,A1 #0

exp(3s1t) ( / wua(t) ) c2 <1 )
U T co + So exp(%slt) dr | + p1()x + ) exp 2s1t 1X (67)

where the functiong, and i, are presented in formulae (65) and (66).
System (39) contains the subsystem

¥ - yoe

dr !

d

% = —(Pf + $190 + So (68)
dor _ ¢

dl‘ = 511

that is integrated and has a general solution in the explicit form

Y = (yo— c1sy " expsit)

1

@0 = — (=50 + cos1 €XPsit — cZ exp Xit) (69)
51

@1 = c1 €XPsyt

if s 20 and

y=@o—ct)t

@0 = (so — )t + co (70)

Y1 =cC1

if s7 = 0 andyy is an arbitrary constant. Then the following ODEs
d 2
% = |:s1 — 2c1y expsit + y—(—so + cos1 eXpsit — c% exp 2?1t)i| w2 (71)
51
and
des
dr
for finding ¢,(¢) are obtained, respectively.

So, ansatz (28) generates the following family of solutions of equation (13) for
M=q=0r=-1:

= [y2(co + (s0 — cDt) — 2ycilga (72)

1
U = —(—so + cos1 €Xpsit — c% exp xi1t) + c1x expsit + @a(t) exp( {1 )
s1 Yo — C15; ~ €XPsat

(73)
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if 570 and

U = co+ (so— cDt + c1x + ga(t) exp( a ) (74)
Yo — cit

if s1 = 0. In (73) and (74), the functiop, is a solution of linear ODEs (71) and (72),
respectively.

Finally, by solving system (38), one can make sure that ansatz (29) generates the
following three-parameter family of solutions of equation (13)at=gq =0

U= eXp<s1t + 2[ @2(1) dt) |:co + / |:s0 exp( — 851t — Zf ©2(1) dt)

+rcs exp <s1t +2(1+ 4r) / ©a(t) dt>:| dti|

+c1x exp <s1t + 2+ 4r) / 0] dt) + @o(1)x? (75)
wheres; # 0 and
Cc2851 €XPsit it ;é _%
0o =1 2+4r)(1— cpexpsit) (76)
2 eXpsit if r=—1.
In the cases; = 0, we obtain the family of the solutions
, 142 142 2
U = (62 —t)il [Coch—tlﬂzb —S0212:(C2 —t)2+ -’_2 ! <C]_+ 1—;—627‘> :|
r#-1,-1 (77)
to the equation
U =UU,, +rU? + 5. (78)
In the cases = —1 andr = —%, the solutions
+ 2
U =50t — c2)log|t — ca| + cot — ¢2) + u (79)
2(t — c2)
and
C 2 S
U =coexp2ct) +ca|x+ L) -2 (80)
2C2 262
are obtained, respectively.
The family of solutions (77) for; = O gives the exact solution
1 1+ 2r x2
U= — N — -+ = 81
co(cp — 1) =7 S02+2r(C2 )+(2+4r)(cz—t) (81)
On the other hand, (78) and (81) are reduced by the substitution
t 1 b(1—
T(t,x) = Uit T=— r=—— S0 = bd-w (82)
U uw—1 7

to the equation

T, = (TH)yy — bT*H w#0,1 (83)
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and to the solution

b(u? — 1) pw-1  x?
P ——— — 4
22 2T S &Y

respectively. This solution was obtained in [24] as a generalization of the known Barenblatt—
Zeldovich solution (see (84) far = 0) [23] for the nonlinear heat equation

Tr = (Tﬂ)xx 2 # 07 1 (85)

It is easily seen that solutions (55), (58), (60)—(62), (64), (67), (73), and (74) are not
of the form (17). Therefore, if the maximal algebra of invariance of equation (13) is the
two-dimensional algebra (16) then they are just non-Lie solutions of this nonlinear equation.
Taking into account the results of papers [16, 28], it is easily seen that the nonlinear equation
(13) is invariant with respect to the trivial algebra (16) if XiJsos1 # O, (i) A1 = 0, sos1 # O
or (i) A1 = 0,509 # O (other coefficients are arbitrary parameters). In these cases the
above-found solutions cannot be obtained using the Lie method.

Of course, if some coefficients vanish in equation (13) then one can obtain the nonlinear
equation with the three-, four- or five-dimensional Lie algebra (for details see [16, 28]). For
such equations, one has to prove additionally that the constructed solutions are non-Lie
solutions. For example, equation (83) is invariant with respect to the 3-dimensional Lie
algebra [28]. Generally speaking, it has been additionally proved that solution (84) cannot
be obtained using the classical Lie procedure (see, e.g. [2-7]). Note that the Barenblatt—
Zeldovich solution is a similarity solution and it can be obtained using the Lie symmetry
of equation (85).

It turns out that it is a non-trivial problem to construct just non-Lie exact solutions for
nonlinear PDEs with non-trivial Lie symmetries. Indeed, a new non-Lie ansatz does not
guarantee construction of new non-Lie exact solutions, if a nonlinear PDE has a non-trivial
symmetry. For example, let us consider equation (13) when0, so = 0,9 = gkf # 0,
ie.

-1 lun
T" " =colco — pr) = +

Uy = UUyy + MUU, + 51U + 2250° (86)
This equation has the four-dimensional Lie symmetry [19] and the following family of
solutions
9 51+ crexp(—irix) + coexp(—3x)
22 1+ ag exp(—sit)
that was found in [19] using the Lie method. On the other hand this family of solutions is

obtained from (57) for = 0,50 = 0,9 = %Af # 0. Thus,the non-Lie ansat{26) generates
the Lie solutiong87) for the nonlinear equation (86).

U=-—

(87)

4. Non-Lie exact solutions of the nonlinear equations (9) and (10)

It is easily seen that using substitution (14), any family of the above-found solutions for the
nonlinear equation (13) is transformed in a corresponding family of solutions for equations
(9) or (10). In table 1, we list the families of the exact solutions of equations (9) and (10)
that were found in this paper.

Some of the found solutions can be applied to solving the Dirichlet and the Neumann
boundary-value problems for nonlinear heat equations (9) and (10). For example, the
solution 1 (see table 1) satisfies the zero boundary condition in the damaif-oo, +00)
for anya < 0, # —1. In the case of the zero Neumann condition, this solution can be
applied for anya < 0, # —1 or«a > 1. Note that the zero Neumann condition (the
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Table 1.
Equation Family of solutions Remark
1. (9) atA; =0 [po(?) + explsit + qg—ﬁ f<po(t) dr] @o(t) is a solution of (59)
q#0,a#-1 x[c1 @Xp(—y1x) + c2 explysx)]] Y v =—aq/(l+a) >0
2. (9) atr; =0 [po(r) + explsat + ¢ 232 [ po(r) dr] @o(t) is a solution of (63)
q#0,a# -1 x[c10C0K|y1lx) + e Sin(lyy )]V yi=—aq/(l+a) <0
3. (9ati =0 [po(t) + c1n(d)” 5 expidsar £ 0] go(0), () see in (54), (56)
q#0,a#-1 y12=7otq/(1+oz)>0
4. 9) ate = —1 [%(—so + cos1 €xpsyt — 3 exp X1t) y = m
s1#0,21=¢q=0 +c1x expsit + () exply (Hx)] L @2(t) is solution of (71)
5. (9)atw=-1 [co + (50 — D)t + c1x+ v = 5t
s1=ra=¢g=0 +@2(1) exply (H)x)] 1 @2(t) is solution of (72)
6. (9) ata = -2 [co exp(2cat) + co(x + ;712)2 — 2‘1—‘_’2]’1/2 2 #0
s1=x=¢q=0
7. (9) ate = —2 exp(—3s10)[soM (1) [ walt) M) = exp[i‘% exp(sit)]
510,01 =¢=0 +coM (1) + ca(x + 2‘;—12)2]—1/2 c2#0
8. 9) fora = -1 [so(t — c2)log |t — c2|
— — g = (c .);)2 —
s1=k&=¢q=0 +eolt —c2) + L]
9. @) fora#-1,-2  (c2— ) Y [—s055 (c2 — )%+
s1=A=qg=0 colcz—t|ﬁ +72(a0;_2)(x+claTJr2)2]l/a
10.  (10) for loglo(t) + 75 [e1 €xp3sat + y1%) @o(t), (1) see in (54), (56)
1
A —49#0 +e2exp(zsat + y20)]] ¥ r2 =30 —49Y2 - 1p)
11 (10) foriy #0 loglgo(t) + gy Le1 €XP(F (511 — A1) go(1), (1) see in (54), (56)
1
22 —49=0 +eox exp(3 (sat — apx))]]
12, (10)A#0,g=0  log[@PE) (o 4 [ som®)_ gy (1), ua (1) see in (65), (66)
. 1 q = w1 (@) 0 exp(%slt) @1(1), 11 y

1
+p1()x + 725 exp(3s1t — 21x)] P

zero flux on the boundary) is a typical request for describing actual processes in physics,
chemistry, and biology. Two examples are considered below.

Example 1.Let us consider the following equation arising in mathematical biology [25]:

T, = [(L4 1oT)T]y + AoT — A3T? (88)
that in the case.o = 0, A, = A3 coincides with the well known Fisher equation [26]
T, = Tey + 22T — AT (89)

The known soliton-like solution of the Fisher equation was obtained in [27]. Note that this
solution can be also found using the suggested method.
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It turns out that the casgy, # O is very specific. Indeed, equation (88) is reduced
to form (9) by the local substitution + Ag7T — T. So the solution 1 (see table 1) at
a =1, cic, = 0 gives the following solutions of equation (88):

(2hzt+2oAp)t
A2 A2(t — co) 2 Sy A3
T =—|1+tanh 0 ex — 90
2A3[ + 5 }rcz(coshww Plyz.x) ©O

(2r3+ror2)t
A2 Ao(t — co) EXp—=—7; A3
T =——=|1+tanh 0 exp| —. /| — 91
2?»3[ - 2 }+Cl (cosh*2(-<))3/2 P Zxox (91)

where cg, c1, ¢, are arbitrary constants. The solutions of the form (91) have attractive

properties: any solutiol* holds the conditiong™* — i—z if t — oo andiz < Agho;

T* — J2[1 +tanh®22] < 2 if x — 400, 40k3 > 0. Taking into account these
properties, we obtain the following theorem.

and

Theorem 2.The bounded exact solution of the boundary-value problem for the generalized
Fisher equation

T, = [(L+ 2oT) o] + 42T — AoT? Ao>1,42>0 (92)

with the initial condition

A
T(0,x) = Co+ C; exp(— /izom) (93)

and the Neumann conditions
T.(t,—00) =0 T.(t,4+00) =0 (94)

is given in the domairz, x) € [0, +00) x (—o0, +00) by the formula

A2 (2+20)t
A2(t — co) exp=z—- Ao
T =2|1+tanh 0 exp| —./ == 95
2 |: + 2 ] +c1 (Coshiz<a)372 p 2 lx|') (95)

whereCo = 3[1 + tanh=222], C; = c¢1(cosh=%2)~%2, andc; > 0.

Remark 6.Solution (95) is not analytic at = 0. However, the second derivative is well
defined at this point sincg, = T,y,_, - Thus this solution satisfies the equation (92)
atx = 0 as well.

X|x—0+

Example 2.Let us consider the following reaction—diffusion equation with exponential
nonlinearities:

T, = (exp(T) Ty)x + so€Xp(—T) + 51 — s2exp(T). (96)

This equation can be applied for describing processes with strong nonlinear diffusion (heat

conduction) and reaction (dissipation). In a particular case, using the known series expansion
T2

exp(T)=1+T+7+-~-

) (97)

T
exp(—T)=1—T+7—~~

one can obtain the generalized Fisher equation (92) as some approximation from
equation (96).
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If one employs the family of solutions 10 (see table 1)8at 1,17 = 0,9 = —s2,
c1 = ¢z, cg = 0 in the case of equation (96), the following theorem can be formulated.

Theorem 3.The exact solution of the boundary-value problem for the nonlinear equation
(96) with the initial condition

T(0,x) =log [Zs_slz + %cosh@x)] (98)
and the Neumann conditions

T,(,00=0 To(t, +00) = /52 (99)
is given in the domairiz, x) € [0, +00) x [0, +00) by the formula
T =log |:2Ss—12 + g tanh?t + = excgal(ﬁt) cosh(s1 +Zﬁt + &x)] (100)

wherecy >0, s1 >0, 5 >0, D= sf + 4sgso > 0.

Note that in the case, < 0 periodic solutions of (96) are obtained and such solutions
are potentially interesting for application as well.

5. Discussion

Thus, a constructive method for obtaining new non-Lieddéres and exact solutions of some
classes of nonlinear diffusion equations is developed in this paper. The method is based on
the consideration of a fixed nonlinear PDE together wittadditional generating condition
in the form of a linear high-order ODE. With the help of this method new non-Liétaas
and solutions were obtained for the nonlinear equations (13), (9) and (10). Some of the
found solutions can be applied for solving the boundary-value problems for the nonlinear
reaction—diffusion equations (9) and (10) and the corresponding examples have been given
in section 4.

If additional generating condition does not contain the varialleen it generates the
following ansatz with separated variables

U = ¢o(t)go(x) + -+ + @n-1(t) gm-1(x) (101)
that can be generalized (see substitution (2)) to the form
AO(U) = (pO(t)gO(x) + -+ Qomfl(t)gmfl(x)- (102)

In particular cases aatze (101) and (102) were used for construction of new solutions
to nonlinear diffusion equations in the recently published papers [29-33]. The families of
solutions of the form

Ao(U) = @o(t) + p1()x + -+ 4+ @1 ()x™ m=340rm=>5 (103)

of equation (1) forB(U) = 0 with the power and exponential nonlinearities were constructed
in these papers (see also the earlier paper [34]). Note that all those solutions can be found
using theorem 1 for the case of the additional generating condition
aru
dxm
A generalization of ansatz (103) for the multidimensional case was suggested in [29, 32].
The simplest cases of dg@itge (101) and (102) fom = 2, g # x' were used for
construction of new solutions to nonlinear diffusion equations in [35]. In the cases

0 m=340rm=5. (104)
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2, g; # x' the problem of finding solution is not easy. Axze (26) fory; »(t) = constant
and (30) for D(t) = constant,a,(t) = constant were used for finding exact solutions
of nonlinear heat equations in the papers [31-33], where the method of linear invariant
subspaces was suggested. That method is reduced to finding solutions in the form (101) or
(102).

It is clear that any additional generating condition (18) #or> 2 generates thhigh-
order operator

m

0 d
ozl(t,x)a—i—u-—}—am(t,x)w—mzo. (105)

The structure of this operator differs from that of any operator of the non-classical symmetry
(the conditional symmetry) [36—38] (in [7, 39] one can find a wide list of the references).
Indeed, any operator of the non-classical symmetmhésfirst-order operatar

In the recently published papers [40-42] a generalization of the non-classical symmetry
is suggested via introduction notions of so-called heir-equations and of the conditional Lie—
Backlund symmetry. It is easy to check that the majority of the solutions found in [40-42]
for nonlinear diffusion equations can be constructed using linear conditions of the form (25)
for a1, @, = constant and the corresponding local substitutions for the unknown function
U (t, x). On the other hand it means that this method can be connected with the conditional
symmetry operators of the high-order.

The suggested method is based on the idea that was applied for the construction of the
fundamental solution to the classical multidimensional heat equation in [8]. This solution
has been found with the help of an additional linear system of ODEs containing the time
as a parameter. The method enables us to construct solutions of the form

Ao(U) = @o(t)go(t, x) + - + @u_1(t)gm-1(t, x) (106)

i.e. in a more general form than (101) and (102). For an illustrative example, consider the
nonlinear reaction—diffusion equation with a convection term

T, = [T°Te]y + MO T T, — 51T — 50T+ a#0 (107)
that can be interpreted as a generalization of the Fisher and Murray equations [14]. Since
it is the particular case of (9) one can reduce this equation to the form
1
U =UU, + =U?+0m0OUU, —asiU — asp (108)
o

using the substitutiod/ = 7*. It turns out that equation (108) for (1) = —(1 + 0—1[))/(t)
is reduced by the ansatz (28) to the following system of ODEs

dy 1,
dar aV ¥1
d 1 1
% = - <1+ —> Y @op1 — as1¢o + —<Pf — aso
t o o
% = —asip1— |1+ 1 z 4o
O 191 o Y1
d 1 1
22 = [——szﬂo + (— - ) oL — an} ¢2
dr o a
for finding unknown functiong/(¢r) andg;,i = 0,1, 2. It is easily seen that in this case

the functiony (r) # constant ifp; # 0. Solving the system of ODEs (109), we obtain
the family of exact solutions that are not the ones with separated variables (101). Note
that in the caser = —1, the system of ODEs (109) is integrated in terms of elementary



Solutions of nonlinear reaction—diffusion—convection equations 8197

functions (see formulae (69)—(72)) and the families of solutions (73) and (74) are found.
In the recently published papers [19, 43], one can find similar examples for the nonlinear
diffusion system of equationdescribing the process of precipitant-assisted protein crystal
growth.
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